Your water is in detention (ponds)

[This is part of a series of posts exploring how a midsized Texas city gets its water. For the first post, click over to see what it takes to fill up a lake.]

In the broadest sense, Abilene has two sources of water: recycled and surface water. Surface water is the water that we draw from the three lakes (Fort Phantom Hill, Hubbard Creek, and O.H. Ivie) as well as the water we scalp from the Clear Fork of the Brazos river. We’ll look at scalping in another post.

How does the water get to these lakes?

Of course rain falls on the watershed of these lakes, but it then has to find its way to the lake. In the case of Fort Phantom Lake, it actually flows through Abilene. While driving around
town, the water (and trash) you see in the ditches and creeks is on its way to your tap.

Abilene_drainage2

Besides creeks and ditches, rain that falls downtown flows into the stormwater sewer system through the drains built into curbs. This water flows straight into the nearest creek to be transported to the lake and thus receives no treatment. This is why you should never dispose of anything but water into sewer drains; it is going straight to your drinking water!

The scenic route

Along the way, the water is diverted in various ways including ponds, detention ponds and riparian wetlands. The latter are the marshy areas often found along the edges of creeks and other water bodies. You might see reeds and cattails along the edges of these places. These wetlands (often ephemeral in this part of the country) provide important ecosystem services to use all. While I’ll let Bill Nye explain it better than I can, you should know that these areas help prevent erosion, fight pollution, provide valuable urban wildlife habitat, and help slow down water to prevent downstream flooding.

Unfortunately, Abilene has removed many of these wetlands in favor of straightening creeks. This is because it is easier to remove trash and treat for mosquitoes in wide straight ditches lined with short grass than in wetlands. It is also an attempt to reduce flooding. Abilene, like many other cities, use detention ponds to slow flood water, collect trash, slow pollution, and other services provided by wetlands. There are approximately 200 detentions ponds scattered through Abilene, though the Abilene Storm Water Department only inspects and maintains slightly under 50 of these ponds.

Detention pond in eastern Abilene before a rainstorm.

Detention pond in eastern Abilene before a rainstorm.

As I will mention in the following video, part of Abilene’s stormwater management plan is to allow water to flow down certain secondary streets, and these small holding areas are crucial to slowing the water down enough to prevent flooding.

2015-07-08 17.32.51

Detention pond after a rainstorm

You might be surprised that there are so many of these ponds scattered across Abilene, since there are so few bodies of water. Many of these ponds are just a few feet deep and spend most of the year as open grassy areas. You may have seen children playing in a detention pond and didn’t realize it was a pond! These ponds provide a place for water to collect during heavy rains to prevent flooding and they slow the flood water down, allowing some trash and debris to fall out of the water before it gets to the lake.

And there is one source of your drinking water. Next week we’ll take a look at another source of water.

If you liked this post and would like to see more, please like instante mense on facebook.

Grab a paddle

A while back I posted an explanation of where and how much it would need to rain in order to fill up Fort Phantom lake. Not accounting for absorption or detention in ponds and other low lying areas it would take a 2.6 inch rain on the entire watershed to fill up the lake, according to my previous calculations. Well, currently Cedar, Elm and Catclaw creeks are out of their banks in places. The following map shows a few rainfall totals for places in the Fort Phantom watershed

7_7Rain

Without data for the western edge of the watershed, it is impossible for me to offer a good estimate of exactly how much water will flow to Fort Phantom lake; however, judging from how little Lake Abilene has risen, I think it is safe to say that portion of the watershed will not contribute as much water to Fort Phantom as the eastern half. As of today (July 7th) the lake is at 45.3%, but click on the link to see the current lake level. Get ready to see a change in the lake level in as the week goes on! And check back here later this week to read about why it can take so long between a rainfall event and a change in the lake level.

What does it take to fill up a lake?

UPDATE: After reading this post to find out why it seems the lake rises so slowly, check out this post where I discuss the recent rain.

Most of Texas has been in exceptional and extreme drought for the past five years. Now due to  el niño, we are finishing spring with cool, wet weather. For the first time in what seems like forever much of Texas is officially drought-free. In fact, some areas are experiencing severe flooding; however, that is not the complete story. What I would like to do today is discuss the flooding and drought issues here in Texas on a watershed level.

Despite these floods and despite the fact that overall Texas reservoirs are 78% full, many lakes are at less than 50% of capacity. People living in the Rolling Plains and Edwards Plateau ecoregions of Texas are still experiencing drought conditions. I built this map below to give an idea of the land area in Texas suffering from drought conditions and to show the number of lakes that are less than half full.

drought_d

In the areas still in drought above live approximately 3.5 million people and all of the lakes shown are water sources for these people. There are other water sources, some lakes which have received some water, and other areas depend upon aquifers (a nonrenewable source), but these empty lakes remain important.

What does it take to fill up a lake?

When it rains, the water does several things. On pervious surfaces, such as lawns and fields, it soaks into the ground to provide soil moisture needed for plants. If the rate of precipitation is greater than what can be absorbed, or if the rain lands on hard surfaces, it begins to run off. Take a parking lot for example: rain runs off of the parking lot into a drainage ditch (or storm sewer), the ditch runs into a gully, that gully runs into a creek, that creek runs into a river, and that river may run into a lake before it ends at the ocean. Cities will then pump water from the lake, treat it, and then citizens will use that water in their houses.

Every lake has a certain area from which it will collect water. This area is called a watershed. Since most of my readers are from the Abilene area, I will use Lake Fort Phantom as an example. This lake is currently at 37% capacity. The watershed of Fort Phantom is approximately 500 square miles. If this entire area were to receive a 1 inch rain and if it were all run into the lake, it would receive 8.66 BILLION gallons of water! That is enough water to last 26,600 families for a year. This also happens to be roughly the amount of water in Lake Fort Phantom right now, and there are 10 times as many people depending upon that water.

Using the example above it would take 2.6 inches of rain over the entire watershed to completely fill up Lake Fort Phantom. Recently much of the Big Country has received lots of rain; the nearby town of Merkel has received 11 inches of rain in the last six weeks, but as I mentioned above, Lake Fort Phantom is only 37% full.

So, where did the water go?

Examine this map I made of the Fort Phantom watershed:

Phantomshed

The rain has to fall into the red shaded area in order to reach the lake. While the lake has 500 square miles to draw from, in reality that is not a lot of area. Merkel may have received a lot of rain, but that water will end up in the Brazos river and not Lake Fort Phantom. Another issue is that not all the rain that falls in the watershed actually ends up in the lake. As I mentioned before, some water is absorbed, but a sustainable amount of water is also diverted into ponds, ephemeral wetlands, rainwater collection catchments and flood control basins. Once it is in these areas the water is used by many people and animals, and these areas should not be considered a waste of water.

The drought may be over for most of Texas, and in the coming weeks the drought may be over for us on the Rolling Plains, but please keep in mind that it takes rain falling in exact areas to refill our water supplies. Though it may seem like we are receiving a lot (and in some areas too much) water, we should not back away from water conservation efforts. We may have a cool wet summer, but then again, we may not.

It is a long time until September.

If you enjoyed this post, click here to visit and like Instante Mense on facebook to be notified of the next post in this series on the Texas drought and other interesting content.